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Analysis, and its generalization
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Abstract

Community detection is a fundamental problem in the domain of
complex network analysis. It has received great attention, and many
community detection methods have been proposed in the last decade.
We first give the definition of community and explain its significance
in section 1. After that, we introduce some community detection algo-
rithms, especially spectral analysis. Moreover, a generalization spectral

analysis is proposed to distinguish a network with three communities.
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1 A Brief introduction to community and its

detection

1.1 Community: Illustration, Definition, and Examples

Social networks are full of easy-to-spot communities, something that schol-
ars have noticed decades ago[7]. The employees of a company are more likely to
interact with their coworkers than with employees of other companies. Mean-
while, students in SUSTech tend to communicate with schoolmates rather than
those at Shenzhen University. Consequently, workplaces and schools appear as
densely interconnected communities within the social network. Communities
could also represent circles of friends, a group of individuals who pursue the
same hobby together, or individuals living in the same neighborhood.

More precisely, for an unweighted and undirected network G = (V, E)
where Vand FE are the node set and the edge set with |[V| = n and |E| = m,
respectively. A community structure of network G is a partition of the network,
denote as C' = {C}, Cy, -, Cy}, where C; C V, UK, C; = Vand C;NC; =0
(4i,j = 1,2, , K and i # j). With the concept of community, an additional

constraint
x
> K@) | (u,0) € Eyu € Cjyv € C;} >>
i,j=1
x
Z {(u,v) | (u,v) € B,ue CyveCi#j}
i,j=1

is always attached to the partition. Intuitively, a community is a group of
nodes with much more edges connecting to nodes within the community than
to nodes from other communities.

Figure 1 gives an example of community structure. To understand the
importance of community intuitively, we will provide several examples imme-

diately.
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Figure 1: An network with five communities painted in 5 different colors

Communities play a vital role in understanding human diseases. Indeed,
proteins involved in the same disease tend to interact with each other[4]. This
finding inspired the disease module hypothesis[3], stating that each disease
can be linked to a well-defined neighborhood of the cellular network. With
these discoveries, we can develop new medicines faster to fight diseases like
COVID-19 and keep us better.

Communities are also crucial in the collaboration network of scientists. For
beginners in scientific research, through the community, they can quickly find
influential scholars to master the general situation of this field better. Scholars
in this field can follow the frontier work faster. Moreover, scientists who want
to try cross-field can rapidly understand the proximity and development of the

target field to make more meaningful work.
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Figure 2: The collaboration network for a specific paper|[6] from [I]

A community structure in a network consists of users and their preferences.
Internet companies can benefit from such a network by identifying its commu-
nity structure. For example, the users who have bought basketball and football
are divided into two different communities, denoted as A and B, respectively.
Then when the company wants to launch an advertisement for a new basket-
ball shoe, the effect of advertising to the users of A will be better than that of
club B, which provides a new idea for improving the efficiency and benefit of

advertisement and commodity recommendation.

1.2 Community Detection Algorithms

In this section, we will briefly introduce the famous two: the agglomerative
algorithm and the divisive algorithm.

The basic idea of the agglomerative algorithm is to calculate the similarity
between each pair of nodes in a certain way and then add the edge in each step

to the primitive empty network where the number of nodes is n. The number of
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edges is 0 based on the descending order of the similarity. This process can stop
at any step, and the community structure is obtained simultaneously. A tree
can also represent the whole process from empty to origin, as shown in figure
3. The green circles at the bottom represent the nodes in the network. As the
blue horizontal dashed line moves up from the bottom of the tree, the nodes
merge into a larger community. When the line moves to the top, the network
becomes one community. The line at any point in the tree corresponds to a
community structure. In the figure, nodes belonging to the same community
are circled by a black ellipse according to the location of the line.

Oppositely, the divisive algorithm tries to find the edge with minimum sim-
ilarity and remove it in each step. Repeat this process, and the whole network
is gradually divided into smaller communities. Similarly, the algorithm can ter-
minate at any step, and the community structure is obtained simultaneously.
Similar to the agglomerative algorithm, we can use a tree to represent the divi-
sion process, which can better describe the continuous process that the whole
network is split into several smaller communities. The relationship between

the agglomerative algorithm and the divisive algorithm is shown below.

agglomerative

- -

e} o] ® g divisive
t N

/ t

community 1 community2 community3 community 4

Figure 3: An illustration of agglomerative algorithm and divisive algorithm

In the next section, we will introduce the spectral analysis algorithm, specif-
ically for meeting the requirement and its sound theoretical principles and

appliances.
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2 spectral analysis for networks with two com-

munities

2.1 Notations and Definitions

For community detection, the spectral methods utilize the eigenspectra
of various types of the network-associated matrix to identify the community
structure. Before stating the algorithm formally, we first introduce some no-

tations in the below chart.

notation meaning
A adjacency matrix
D diagonal matrix that D;; = degree of node i
L Laplacian matrix which equals D — A
S column vector records nodes information
ki number of edges of node ¢ in community j

Table 1: some notations and the corresponding meanings

The notation above will be illustrated by an example from figure 4.
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Figure 4: An illustration network with two communities

For the network shown above, we have

S =111, ¥
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where T represents transpose.
Meanwhile,
3 6

=1 =4

Similarity we have

3

i=1 1=4
Moreover,

(0 1 1 0 0 0] (2 0 0 0 0 0]
1 01 0 00 02 0000O0
1 10100

A D_ 00 3 000
0O 01 0 1 1 000 3 00
000 1L 0 1 00 0O0 20
000 1 1 0] 0000 0 2]

and L = D — A. In the above formulas, red and purple indicates that they
record the information within community 1 and community 2 in figure 4, re-

spectively. In addition, brown records the edges between communities.

2.2 A General Instruction Case

Now consider a general case with |V| = n, X = 2. Also, there are m
and n —m nodes in community 1 and community 2, respectively. Suppose we
are already familiar with the community structure. Namely, S is undisputed
where

S = [1’ e 1,—1, e _1]

We are interested in STLS, which is
STLS = ST(D— A)S = STDS — STAS

After simplification,

m n m

STDS = (Z ki + Z ki) + (Z ko + i: k1)
i—1 =1

1=m+1 1=m+1
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Similarly,

m n m n

SRS SEEEE) SR S

i=m-+1 =1 1=m+1

Therefore, STLS = 2 (Zm kig + > -

number of edges between two communities. Then According to our definition

A ) which is four times the

of community, finding the best partition is equivalent to minimizing STLS.

2.3 Spectral Analysis

This process is only applicable when there are two communities in the
network. If satisfies, we can minimize STLS to distinguish them. However, we
can only write S precisely once we work on the community structure. There
is no need to find S. We start from the properties of L, the Laplacian matrix.

Consider a network G = (V,E) with V = n and X = 2, where X = 2
comes from the prior knowledge or our observation. Here we do not add any
constraint to |F|. Then L corresponding to G has the following properties we

care about:
e 0=X; <Ay <o <A\, where ), represents eigenvalue of L,

e <vl v, >=1,<vl,v;,>=0fori+#j,i,j5=1,--,n where < o, ® > and

i Y i V5

v; represents inner product of vectors and eigenvector of \;, respectively.
Then
o span{vy,vq, -, v, } = R"
e VS eR", S =ayv; +ayvy + - +a,v,

Hence we have

STLS = (a,v; 4 ayvy + -+ a,v,)" L(a,v; + ayvy + -+ a,v,)
= (ayv; + agvy + -+ a,0,) " (\ayv; + agvy + - + a,v,,)
= (a1 + axvl + -+ a,vl) (A\avy + agvy + -+ a,v,)
= a3\ + a3y + -+ a2,
where a; = vI'S. Then minimizing STLS ~ maximizing a3\, subject to
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3 Spectral analysis for networks with three com-

munities

Now consider a network with three communities. An illustration example

is shown below.

Figure 5: An illustration network with three communities

To detect the community structure similar to figure 5, we can apply the
spectral algorithm for three rounds and use model-selecting thinking to derive
the final result.

spectrallanalysis

spectrallanalysis spectrallanalysis spectrallanalysis

Figure 6: round 1 Figure 7: round 2 Figure 8: round 3

Here is the description. For graph G, A, B,C are the true communities

and A;, B;,C; are communities from round ¢, ¢ = 1,2,3. In round 1, we use
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spectral analysis twice, the first time for the entire network to get A; and
B,C, as a whole, the second time for B;C; to get B; and C,. In round
2, we set By, = B; and denote the remaining nodes as A,C,. Then we use
spectral analysis for A,C, to get A, and C,. In round 3, we set C5 = Cj,
and the rest procedure is similar to round 2. Moreover, all A, B, and Cs are
sets whose elements are the index of nodes in G. We call the whole process as
roundabouts.

The next step is finding the difference. Here we apply the following algo-

rithm.

Algorithm 1 Find the different elements of three sets
Require: : Sets A, B,C
1: Create Sggme and Sy frent
2: for u in A: do
3: if w in B and C simultaneously then
add u to S
end if
end for
while A + B # C' do
Find w such that {u | u € A,u & S,4me} © € A, move such u from A to

Sdifferent
9:  Find w such that {u|u € B,u ¢ S

Sdifferent
10:  Find w such that {u |u € C,u ¢ S, ..} © € A, move such u from C' to

Sdifferent
11: end while

Ensure: S, S4ifferent

same

same) U € A, move such u from B to

For A;, B;, C; we run the algorithm 1, we will get S,,,,c; and Sy, ¢ ferentis

1= 17 27 3. Define Stotalisame = {Ssamel ﬂSsameQOSsamES}ﬂ Stotalidifferent =
VAS,

best community structure. To achieve this, we use modularity[5] to evaluate

otal_same- Next, we consider arranging the elements in S to attain the

the arrangement. We will not present its formula here for brevity. Instead, we

will give an intuitive example to explain what it means.

10
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a. OPTIMAL PARTITION b. SUBOPTIMAL PARTITION
M =0 .41 M=0.22
c. SINGLE COMMUNITY d. NEGATIVE MODULARITY
M=0 M= -012

Figure 9: An illustration for modularity from [2]

In short, the better the community is divided, the higher the modularity
should be. We use this principle and the idea of greed to deal with S, which

is summarized as algorithm 2 presented in Appendix.1. The inputs are

A=B=C=5,

otal__same

and

S = Sdifferentitotal

In conclusion, for a network G = (V, E) with X = 3, we can get the

community structure via the following steps:
o get A;, B;,C; by roundabouts method,s = 1,2, 3,

o get S,

otal__same and Stotalidifferent Via algorlthm 17

o gets the best partition via algorithm 2.

11
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Appendix.1

Algorithm 2 Find the best partition
Require: Sets A, B,C, S
: Create n, Syepnp
Create function ArrangeNode(A, B,C,u)
Add u to A and calculate modularity M, , then delete u from A
Add u to B and calculate modularity My , then delete u from B
Add u to C and calculate modularity Mcu, then delete u from C
if maw{M, ,Mp ,M¢ } =M, then
Move u to A
else if maz{M, ,Mp ,Mq } = Mp then
Move u to B
else if maz{M, ,Mp ,Mq } = Mg then
Move u to C
. else
Move u to Sepy,
: end if
: End ArrangeNode(A, B,C,u)
: for u in S: do
run ArrangeNode(A, B,C,u)
: end for
A |Stemp‘
: for win S,,,: do
run ArrangeNode(A, B,C, u)
if [S;emp| = n then
Generate random number e € [0, 1]
ife < % then
Move u to A
else if% <e< % then
Move u to B
else
Move u to C
end if
end if
320 n<|S,
33: end for
Ensure: A, B,C

W W NN DN DNDNDNDDDDNDDNDND R = = = == = = = =
H PP XTGR9 0k w2

emp|
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