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Abstract

Community detection is a fundamental problem in the domain of
complex network analysis. It has received great attention, and many
community detection methods have been proposed in the last decade.
We first give the definition of community and explain its significance
in section 1. After that, we introduce some community detection algo-
rithms, especially spectral analysis. Moreover, a generalization spectral
analysis is proposed to distinguish a network with three communities.
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1 A Brief introduction to community and its
detection

1.1 Community: Illustration, Definition, and Examples

Social networks are full of easy-to-spot communities, something that schol-
ars have noticed decades ago[7]. The employees of a company are more likely to
interact with their coworkers than with employees of other companies. Mean-
while, students in SUSTech tend to communicate with schoolmates rather than
those at Shenzhen University. Consequently, workplaces and schools appear as
densely interconnected communities within the social network. Communities
could also represent circles of friends, a group of individuals who pursue the
same hobby together, or individuals living in the same neighborhood.

More precisely, for an unweighted and undirected network 𝐺 = (𝑉 , 𝐸)
where 𝑉 and 𝐸 are the node set and the edge set with |𝑉 | = 𝑛 and |𝐸| = 𝑚,
respectively. A community structure of network 𝐺 is a partition of the network,
denote as 𝐶 = {𝐶1, 𝐶2, ⋯ , 𝐶𝒦}, where 𝐶𝑖 ⊂ 𝑉, ∪𝒦

𝑖=1𝐶𝑖 = 𝑉 and 𝐶𝑖 ∩ 𝐶𝑗 = ∅
(𝑖, 𝑗 = 1, 2, ⋯ , 𝒦 and 𝑖 ≠ 𝑗). With the concept of community, an additional
constraint

𝒦
∑
𝑖,𝑗=1

|{(𝑢, 𝑣) ∣ (𝑢, 𝑣) ∈ 𝐸, 𝑢 ∈ 𝐶𝑖, 𝑣 ∈ 𝐶𝑖}| >>

𝒦
∑
𝑖,𝑗=1

∣{(𝑢, 𝑣) ∣ (𝑢, 𝑣) ∈ 𝐸, 𝑢 ∈ 𝐶𝑖, 𝑣 ∈ 𝐶𝑗, 𝑖 ≠ 𝑗}∣

is always attached to the partition. Intuitively, a community is a group of
nodes with much more edges connecting to nodes within the community than
to nodes from other communities.

Figure 1 gives an example of community structure. To understand the
importance of community intuitively, we will provide several examples imme-
diately.
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Figure 1: An network with five communities painted in 5 different colors

Communities play a vital role in understanding human diseases. Indeed,
proteins involved in the same disease tend to interact with each other[4]. This
finding inspired the disease module hypothesis[3], stating that each disease
can be linked to a well-defined neighborhood of the cellular network. With
these discoveries, we can develop new medicines faster to fight diseases like
COVID-19 and keep us better.

Communities are also crucial in the collaboration network of scientists. For
beginners in scientific research, through the community, they can quickly find
influential scholars to master the general situation of this field better. Scholars
in this field can follow the frontier work faster. Moreover, scientists who want
to try cross-field can rapidly understand the proximity and development of the
target field to make more meaningful work.
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Figure 2: The collaboration network for a specific paper[6] from [1]

A community structure in a network consists of users and their preferences.
Internet companies can benefit from such a network by identifying its commu-
nity structure. For example, the users who have bought basketball and football
are divided into two different communities, denoted as 𝐴 and 𝐵, respectively.
Then when the company wants to launch an advertisement for a new basket-
ball shoe, the effect of advertising to the users of 𝐴 will be better than that of
club 𝐵, which provides a new idea for improving the efficiency and benefit of
advertisement and commodity recommendation.

1.2 Community Detection Algorithms

In this section, we will briefly introduce the famous two: the agglomerative
algorithm and the divisive algorithm.

The basic idea of the agglomerative algorithm is to calculate the similarity
between each pair of nodes in a certain way and then add the edge in each step
to the primitive empty network where the number of nodes is n. The number of
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edges is 0 based on the descending order of the similarity. This process can stop
at any step, and the community structure is obtained simultaneously. A tree
can also represent the whole process from empty to origin, as shown in figure
3. The green circles at the bottom represent the nodes in the network. As the
blue horizontal dashed line moves up from the bottom of the tree, the nodes
merge into a larger community. When the line moves to the top, the network
becomes one community. The line at any point in the tree corresponds to a
community structure. In the figure, nodes belonging to the same community
are circled by a black ellipse according to the location of the line.

Oppositely, the divisive algorithm tries to find the edge with minimum sim-
ilarity and remove it in each step. Repeat this process, and the whole network
is gradually divided into smaller communities. Similarly, the algorithm can ter-
minate at any step, and the community structure is obtained simultaneously.
Similar to the agglomerative algorithm, we can use a tree to represent the divi-
sion process, which can better describe the continuous process that the whole
network is split into several smaller communities. The relationship between
the agglomerative algorithm and the divisive algorithm is shown below.

Figure 3: An illustration of agglomerative algorithm and divisive algorithm

In the next section, we will introduce the spectral analysis algorithm, specif-
ically for meeting the requirement and its sound theoretical principles and
appliances.
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2 spectral analysis for networks with two com-
munities

2.1 Notations and Definitions

For community detection, the spectral methods utilize the eigenspectra
of various types of the network-associated matrix to identify the community
structure. Before stating the algorithm formally, we first introduce some no-
tations in the below chart.

notation meaning
𝐴 adjacency matrix
𝐷 diagonal matrix that 𝐷𝑖𝑖 = degree of node 𝑖
𝐿 Laplacian matrix which equals 𝐷 − 𝐴
𝑆 column vector records nodes information

𝑘𝑖𝑗 number of edges of node 𝑖 in community 𝑗

Table 1: some notations and the corresponding meanings

The notation above will be illustrated by an example from figure 4.

Figure 4: An illustration network with two communities

For the network shown above, we have

𝑆 = [1, 1, 1,−1, −1, −1]𝑇

6
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where 𝑇 represents transpose.
Meanwhile,

𝑘11 = 𝑘21 = 𝑘31 = 2,
3

∑
𝑖=1

𝑘𝑖1 = 6 and 𝑘42 = 𝑘52 = 𝑘62 = 2,
6

∑
𝑖=4

𝑘𝑖2 = 6

Similarity we have

𝑘12 = 𝑘22 = 0, 𝑘32 = 1,
3

∑
𝑖=1

𝑘𝑖2 = 1 and 𝑘41 = 1, 𝑘51 = 𝑘61 = 0,
6

∑
𝑖=4

𝑘𝑖2 = 1

Moreover,

𝐴 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 1 0 0
0 0 1 0 1 1
0 0 0 1 0 1
0 0 0 1 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝐷 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2 0 0 0 0 0
0 2 0 0 0 0
0 0 3 0 0 0
0 0 0 3 0 0
0 0 0 0 2 0
0 0 0 0 0 2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and 𝐿 = 𝐷 − 𝐴. In the above formulas, red and purple indicates that they
record the information within community 1 and community 2 in figure 4, re-
spectively. In addition, brown records the edges between communities.

2.2 A General Instruction Case

Now consider a general case with |𝑉 | = 𝑛, 𝒦 = 2. Also, there are 𝑚
and 𝑛 − 𝑚 nodes in community 1 and community 2, respectively. Suppose we
are already familiar with the community structure. Namely, 𝑆 is undisputed
where

𝑆 = [1, ⋯ , 1,−1, ⋯ , −1]

We are interested in 𝑆𝑇𝐿𝑆, which is

𝑆𝑇𝐿𝑆 = 𝑆𝑇(𝐷 − 𝐴)𝑆 = 𝑆𝑇𝐷𝑆 − 𝑆𝑇𝐴𝑆

After simplification,

𝑆𝑇𝐷𝑆 = (
𝑚

∑
𝑖=1

𝑘𝑖1 +
𝑛

∑
𝑖=𝑚+1

𝑘𝑖2) + (
𝑚

∑
𝑖=1

𝑘𝑖2 +
𝑛

∑
𝑖=𝑚+1

𝑘𝑖1)
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Similarly,

−𝑆𝑇𝐴𝑆 = −(
𝑚

∑
𝑖=1

𝑘𝑖1 +
𝑛

∑
𝑖=𝑚+1

𝑘𝑖2) + (
𝑚

∑
𝑖=1

𝑘𝑖2 +
𝑛

∑
𝑖=𝑚+1

𝑘𝑖1)

Therefore, 𝑆𝑇𝐿𝑆 = 2 ∗ (∑𝑚
𝑖=1 𝑘𝑖2 + ∑𝑛

𝑖=𝑚+1 𝑘𝑖1), which is four times the
number of edges between two communities. Then According to our definition
of community, finding the best partition is equivalent to minimizing 𝑆𝑇𝐿𝑆.

2.3 Spectral Analysis

This process is only applicable when there are two communities in the
network. If satisfies, we can minimize 𝑆𝑇𝐿𝑆 to distinguish them. However, we
can only write 𝑆 precisely once we work on the community structure. There
is no need to find 𝑆. We start from the properties of 𝐿, the Laplacian matrix.

Consider a network 𝐺 = (𝑉 , 𝐸) with 𝑉 = 𝑛 and 𝒦 = 2, where 𝒦 = 2
comes from the prior knowledge or our observation. Here we do not add any
constraint to |𝐸|. Then 𝐿 corresponding to 𝐺 has the following properties we
care about:

• 0 = 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝑛 where 𝜆𝑖 represents eigenvalue of 𝐿,

• < 𝑣𝑇
𝑖 , 𝑣𝑖 >= 1, < 𝑣𝑇

𝑖 , 𝑣𝑗 >= 0 for 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1, ⋯ , 𝑛 where < •, • > and
𝑣𝑖 represents inner product of vectors and eigenvector of 𝜆𝑖, respectively.

Then

• span{𝑣1, 𝑣2, ⋯ , 𝑣𝑛} = ℝ𝑛

• ∀𝑆 ∈ ℝ𝑛, 𝑆 = 𝑎1𝑣1 + 𝑎2𝑣2 + ⋯ + 𝑎𝑛𝑣𝑛

Hence we have

𝑆𝑇𝐿𝑆 = (𝑎1𝑣1 + 𝑎2𝑣2 + ⋯ + 𝑎𝑛𝑣𝑛)𝑇 𝐿 (𝑎1𝑣1 + 𝑎2𝑣2 + ⋯ + 𝑎𝑛𝑣𝑛)

= (𝑎1𝑣1 + 𝑎2𝑣2 + ⋯ + 𝑎𝑛𝑣𝑛)𝑇 (𝜆1𝑎1𝑣1 + 𝑎2𝑣2 + ⋯ + 𝑎𝑛𝑣𝑛)

= (𝑎1𝑣𝑇
1 + 𝑎2𝑣𝑇

2 + ⋯ + 𝑎𝑛𝑣𝑇
𝑛) (𝜆1𝑎1𝑣1 + 𝑎2𝑣2 + ⋯ + 𝑎𝑛𝑣𝑛)

= 𝑎2
1𝜆1 + 𝑎2

2𝜆2 + ⋯ + 𝑎2
𝑛𝜆𝑛

where 𝑎𝑖 = 𝑣𝑇
𝑖 𝑆. Then minimizing 𝑆𝑇𝐿𝑆 ≈ maximizing 𝑎2

2𝜆2 subject to
∑𝑛

𝑖=1 𝑎2
𝑖 = 𝑛.
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3 Spectral analysis for networks with three com-
munities

Now consider a network with three communities. An illustration example
is shown below.

Figure 5: An illustration network with three communities

To detect the community structure similar to figure 5, we can apply the
spectral algorithm for three rounds and use model-selecting thinking to derive
the final result.

Figure 6: round 1 Figure 7: round 2 Figure 8: round 3

Here is the description. For graph 𝐺, 𝐴, 𝐵, 𝐶 are the true communities
and 𝐴𝑖, 𝐵𝑖, 𝐶𝑖 are communities from round 𝑖, 𝑖 = 1, 2, 3. In round 1, we use
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spectral analysis twice, the first time for the entire network to get 𝐴1 and
𝐵1𝐶1 as a whole, the second time for 𝐵1𝐶1 to get 𝐵1 and 𝐶1. In round
2, we set 𝐵2 = 𝐵1 and denote the remaining nodes as 𝐴2𝐶2. Then we use
spectral analysis for 𝐴2𝐶2 to get 𝐴2 and 𝐶2. In round 3, we set 𝐶3 = 𝐶2,
and the rest procedure is similar to round 2. Moreover, all 𝐴, 𝐵, and 𝐶s are
sets whose elements are the index of nodes in 𝐺. We call the whole process as
roundabouts.

The next step is finding the difference. Here we apply the following algo-
rithm.

Algorithm 1 Find the different elements of three sets
Require: : Sets 𝐴, 𝐵, 𝐶

1: Create 𝑆𝑠𝑎𝑚𝑒 and 𝑆𝑑𝑖𝑓𝑓𝑒𝑛𝑡
2: for 𝑢 in 𝐴: do
3: if 𝑢 in 𝐵 and 𝐶 simultaneously then
4: add 𝑢 to 𝑆𝑠𝑎𝑚𝑒
5: end if
6: end for
7: while 𝐴 ≠ 𝐵 ≠ 𝐶 do
8: Find 𝑢 such that {𝑢 ∣ 𝑢 ∈ 𝐴, 𝑢 ∉ 𝑆𝑠𝑎𝑚𝑒} 𝑢 ∈ 𝐴, move such 𝑢 from 𝐴 to

𝑆𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡
9: Find 𝑢 such that {𝑢 ∣ 𝑢 ∈ 𝐵, 𝑢 ∉ 𝑆𝑠𝑎𝑚𝑒} 𝑢 ∈ 𝐴, move such 𝑢 from 𝐵 to

𝑆𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡
10: Find 𝑢 such that {𝑢 ∣ 𝑢 ∈ 𝐶, 𝑢 ∉ 𝑆𝑠𝑎𝑚𝑒} 𝑢 ∈ 𝐴, move such 𝑢 from 𝐶 to

𝑆𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡
11: end while
Ensure: 𝑆𝑠𝑎𝑚𝑒, 𝑆𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡

For 𝐴𝑖, 𝐵𝑖, 𝐶𝑖 we run the algorithm 1, we will get 𝑆𝑠𝑎𝑚𝑒𝑖 and 𝑆𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖,
𝑖 = 1, 2, 3. Define 𝑆𝑡𝑜𝑡𝑎𝑙_𝑠𝑎𝑚𝑒 = {𝑆𝑠𝑎𝑚𝑒1∩𝑆𝑠𝑎𝑚𝑒2∩𝑆𝑠𝑎𝑚𝑒3}, 𝑆𝑡𝑜𝑡𝑎𝑙_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 =
𝑉 \𝑆𝑡𝑜𝑡𝑎𝑙_𝑠𝑎𝑚𝑒. Next, we consider arranging the elements in 𝑆 to attain the
best community structure. To achieve this, we use modularity[5] to evaluate
the arrangement. We will not present its formula here for brevity. Instead, we
will give an intuitive example to explain what it means.

10
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Figure 9: An illustration for modularity from [2]

In short, the better the community is divided, the higher the modularity
should be. We use this principle and the idea of greed to deal with 𝑆, which
is summarized as algorithm 2 presented in Appendix.1. The inputs are

𝐴 = 𝐵 = 𝐶 = 𝑆𝑡𝑜𝑡𝑎𝑙_𝑠𝑎𝑚𝑒

and
𝑆 = 𝑆𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡_𝑡𝑜𝑡𝑎𝑙

In conclusion, for a network 𝐺 = (𝑉 , 𝐸) with 𝒦 = 3, we can get the
community structure via the following steps:

• get 𝐴𝑖, 𝐵𝑖, 𝐶𝑖 by roundabouts method,𝑖 = 1, 2, 3,

• get 𝑆𝑡𝑜𝑡𝑎𝑙_𝑠𝑎𝑚𝑒 and 𝑆𝑡𝑜𝑡𝑎𝑙_𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 via algorithm 1,

• gets the best partition via algorithm 2.

11
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Appendix.1

Algorithm 2 Find the best partition
Require: Sets 𝐴, 𝐵, 𝐶, 𝑆

1: Create 𝑛, 𝑆𝑡𝑒𝑚𝑝
2: Create function ArrangeNode(𝐴, 𝐵, 𝐶, 𝑢)
3: Add 𝑢 to 𝐴 and calculate modularity 𝑀𝐴𝑢

, then delete 𝑢 from 𝐴
4: Add 𝑢 to 𝐵 and calculate modularity 𝑀𝐵𝑢

, then delete 𝑢 from 𝐵
5: Add 𝑢 to 𝐶 and calculate modularity 𝑀𝐶𝑢

, then delete 𝑢 from 𝐶
6: if 𝑚𝑎𝑥{𝑀𝐴𝑢

, 𝑀𝐵𝑢
, 𝑀𝐶𝑢

} = 𝑀𝐴𝑢
then

7: Move 𝑢 to 𝐴
8: else if 𝑚𝑎𝑥{𝑀𝐴𝑢

, 𝑀𝐵𝑢
, 𝑀𝐶𝑢

} = 𝑀𝐵𝑢
then

9: Move 𝑢 to 𝐵
10: else if 𝑚𝑎𝑥{𝑀𝐴𝑢

, 𝑀𝐵𝑢
, 𝑀𝐶𝑢

} = 𝑀𝐶𝑢
then

11: Move 𝑢 to 𝐶
12: else
13: Move 𝑢 to 𝑆𝑡𝑒𝑚𝑝
14: end if
15: End ArrangeNode(𝐴, 𝐵, 𝐶, 𝑢)
16: for 𝑢 in 𝑆: do
17: run ArrangeNode(𝐴, 𝐵, 𝐶, 𝑢)
18: end for
19: 𝑛 ← |𝑆𝑡𝑒𝑚𝑝|
20: for 𝑢 in 𝑆𝑡𝑒𝑚𝑝: do
21: run ArrangeNode(𝐴, 𝐵, 𝐶, 𝑢)
22: if |𝑆𝑡𝑒𝑚𝑝| = 𝑛 then
23: Generate random number 𝑒 ∈ [0, 1]
24: if 𝑒 < 1

3 then
25: Move 𝑢 to 𝐴
26: else if 1

3 ≤ 𝑒 < 2
3 then

27: Move 𝑢 to 𝐵
28: else
29: Move 𝑢 to 𝐶
30: end if
31: end if
32: 𝑛 ← |𝑆𝑡𝑒𝑚𝑝|
33: end for
Ensure: 𝐴, 𝐵, 𝐶
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